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Preface

The Eighth International Conference on Data Mining and Big Data (DMBD 2023) was
held on December 9–12, 2023 in Sanya, China. DMBD 2023 served as an international
forum for researchers to exchange the latest advances in theories, models, and applica-
tions of data mining and big data as well as artificial intelligence techniques. DMBD
2023 was the eighth event after the successful first event (DMBD 2016) at Bali Island of
Indonesia, second event (DMBD 2017) at Fukuoka City of Japan, third event (DMBD
2018) at Shanghai of China, fourth event (DMBD 2019) at ChiangMai of Thailand, fifth
event (DMBD 2020) at Belgrade of Serbia, sixth event (DMBD 2021) at Guangzhou of
China and seventh event (DMBD 2022) at Beijing of China virtually.

These two volumes (CCIS vol. 2017 and vol. 2018) contain papers presented at
DMBD 2023. The contents of those papers cover some major topics of data mining and
big data. The conference received 79 submissions, at least three reviewers per submission
in a double-blind review. The committee accepted 38 regular papers to be included in
the conference program with an acceptance rate of 48.1%. The proceedings contain
revised versions of the accepted papers.While revisions are expected to take the referee’s
comments into account, this was not enforced and the authors bear full responsibility
for the content of their papers.

DMBD 2023 was organized by the International Association of Swarm and Evolu-
tionary Intelligence (IASEI), and co-organized by Peking University and Southern Uni-
versity of Science and Technology, Computational Intelligence Laboratory of Peking
University (CIL@PKU), Advanced Institute of Big Data, Beijing, Key Lab of Informa-
tion SystemRequirement, Science and Technology on Information Systems Engineering
Laboratory, and technically co-sponsored by City Brain Technical Committee, Chinese
Institute of Command and Control (CICC), International Neural Network Society, and
also supported by Nanjing Kangbo Intelligent Health Academy, Springer-Nature, and
BeijingXinghuiHigh-TechCo. The conferencewould not have been such a successwith-
out the support of these organizations, and we sincerely thank them for their continued
assistance and support.

We would also like to thank the authors who submitted their papers to DMBD 2023,
and the conference attendees for their interest and support. We thank the Organizing
Committee for their time and effort dedicated to arranging the conference. This allowed
us to focus on the paper selection and deal with the scientific program. We thank the
Program Committee members and the external reviewers for their hard work in review-
ing the submissions; the conference would not have been possible without their expert
reviews. Furthermore, this work is partially supported by the National Natural Science
Foundation of China (Grant No. 62250037, 62276008, and 62076010), and also partially
supported by the National Key R&D Program of China (Grant No. 2022YFF0800601).



vi Preface

Finally, we thank the EasyChair system and its operators for making the entire process
of managing the conference convenient.

December 2023 Ying Tan
Yuhui Shi
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Comparison of Prediction Methods
on Large-Scale and Long-Term Online Live

Streaming Data

Huan Chen , Shuhui Guo , Siyu Lai , and Xin Lu(B)

College of Systems Engineering, National University of Defense Technology, Changsha 410073,
China

xin.lu.lab@outlook.com

Abstract. Effective prediction of online live streaming traffic plays a crucial role
not only in optimizing network resource allocation for enhancing viewer expe-
rience but also in assessing factors impacting audience retention and the over-
all sustainability of streaming platforms. This study conducts a comprehensive
evaluation of machine learning methods for online live streaming traffic predic-
tion using extensive hourly traffic data. The dataset comprises 1,385,444,808 live
streaming entries and encompasses 30,690,841 unique streamers from the Douyu
platform, spanning December 2020 to April 2023. Various experimental settings
are employed to compare the performance of these methods. Our findings reveal
that among ten methodologies considered, the Bidirectional Long Short-Term
Memory, Extra Tree (ET), and Random Forest models demonstrate consistent
and robust performance. Particularly, the ET model exhibits outstanding accuracy
and precision in predicting daily viewer counts when incorporating pertinent fea-
tures. In the domain of large-scale and long-term live streaming data prediction,
machine learning approaches surpass traditional time series forecasting methods.
Moreover, our analysis underscores the significance of incorporating streamer
count in enhancing the accuracy of network traffic prediction. Interestingly, while
hourly features show limited impact, in certain scenarios, their inclusionmay even
diminish the predictive efficacy of the models.

Keywords: Online live streaming ·Machine learning · Time series prediction ·
Extra Tree · Bi-LSTM

1 Introduction

Online live streaming, among the myriad Internet applications, has experienced rapid
evolution propelled by its strong interactivity and the liberation from temporal and spatial
constraints [1]. Since 2016, the surge in online live streaming has led to the emergence
of numerous platforms, including Twitch, Douyu TV, TikTok, and others, captivating
millions of users globally. The content spectrum of online live streaming has expanded
from entertainment-focused gaming to diverse applications encompassing education,
culture, sports, tourism, and beyond [2]. The onset of the COVID-19 pandemic further

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Tan and Y. Shi (Eds.): DMBD 2023, CCIS 2017, pp. 28–47, 2024.
https://doi.org/10.1007/978-981-97-0837-6_3
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accelerated the momentum of online live streaming [3], facilitating the emergence of
novel streaming methods such as “remote learning” [4], “e-commerce live streaming”
[5], and “social live streaming” [6]. This evolution triggered a fervor for live streaming,
exemplified by the staggering statistics: by December 2022, China recorded a soaring
751 million live streaming users, marking an increase of 47.28 million from December
2021, constituting a significant 70.3% of the total Internet user base [7].

The increasing coverage and popularity has brought numerous challenges to online
live streaming platforms [8]. For example, game live streaming emphasizes on clarity and
smoothness, while business live streaming requires stability. Faced with the differences
in technology requirements, as well as the surge in traffic, platform operators need to
use various technologies to maintain the stability and fluency of the platform. Another
challenge is the high volume and frequency of “Danmu” (a subtitle system in online
video platforms that allows users to overlay moving comments onto a playing video that
are synchronized to the video timeline [9]), which puts great pressure on the system and
imposes excessive technical requirements on the platform. Network traffic prediction
can help platform operators optimize network management, and provide users with a
smooth and stable live streaming experience. Furthermore, it can also evaluate the impact
of factors such as viewers’ behaviors, content preferences, and platform performance
on the number of viewers, helping to understand the dynamic relationship between
streamers and viewers, and further revealing factors that contribute to audience retention
and overall platform sustainability.

In recent years, some scholars have been devoted to the research of live streaming
prediction. In the related research on predicting the popularity of live streaming rooms,
Kaytoue et al. [10] observed a strong correlation between the initial popularity of live
streams and their future popularity. Based on this finding, they developed a linear regres-
sion model that utilizes the historical viewer count to predict the future viewer count.
Furthermore, Jia et al. [11] demonstrated a strong correlation between the popularity of
a live streaming room and the frequency at which the streamer conducts live streams.
Arnett et al. [12] found through analysing live streaming data from Twitter, YouTube,
and Instagram that the timing of account creation by streamers does not directly affect
their popularity (measured by the number of viewers and fans). How, having a social
media account is crucial for the growth of popularity. Netzorg et al. [13] propose a
temporal analysis method that utilizes all relevant information available at time t to pre-
dict the eventual absolute popularity (measured by the number of fans) at time t + δ.
The predictive results indicate that the behaviors of streamers play a significant role in
predicting their popularity.

In other related research on live streaming prediction, Nascimento et al. [14] created
a linear regression model to predict the amount of chat based on the number of viewers
logged into a channel. In an effort to infer the future income of streamers with users’
attributes as features, Tu et al. [15] identified GBDT as one of themost effective/accurate
decision tree algorithms compared toCart, AdaBoost, andRF. They also find that stream-
ers’ income is most affected by the number of fans, and that streamers with more fans
tend to receive more virtual gifts. Chen et al. [16] collected over 9.5 million Danmu data
from 500 live streaming rooms on Douyu platform and proposed a novel model that
integrates multiple types of semantic information from Danmu, including sentiment,
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topics, as well as information on the viewers, and used these information to predict the
value of virtual gifts sent by the viewers. The results showed that the gifting behaviours
of viewers can be well predicted with features extracted from the Danmu data.

We can see that the majority of online live streaming studies focused on statistical
analysis of live streaming data, while only a few attempted to study on traffic prediction.
What’s more, most of these prediction studies were limited with small sample size, short
observation periods, and low generalizability of prediction results, etc. The accuracy
and effectiveness of predictions still need to be further verified and improved in practi-
cal applications. To overcome these limitations, this study aims to conduct a thorough
comparative analysis of various methods and models employed for traffic prediction
based on large-scale, long-term live streaming data. Additionally, we will integrate dif-
ferent features to enhance the accuracy and interpretability of predictions. We utilize
large-scale and long-term online live streaming data to employ different methods for
prediction. Then, through analyzing factors which affect the traffic of live streaming
platforms, we extract different features for prediction and evaluate their contribution in
improving prediction accuracy with various algorithms.

2 Dataset and Methods

2.1 Live Streaming Data

Douyu, founded in 2016, is the leading online live streaming platform in China. As a
typical live streaming platform, it has a large number of active users and provides rich
live streaming services. According to Douyu’s 2022 annual financial report [17], in the
fourth quarter, the Monthly Active Users (MAU) on its mobile platform reached 57.4
million, while the number of paying users remained stable at 5.6 million.

In this study, continuous live streaming data from Douyu, including room ID, room
name, live streaming category ID, streamer ID, nickname of streamer, start time of
streaming, time of data retrieval, number of live viewers, and number of fans, were
obtained with a deliberately developed crawler system by scraping all streaming rooms
using Douyu’s open data interface (API). The original dataset used in this study covers a
time span of 839 days, from December 25, 2020, to April 12, 2023, with a time interval
of 10 min. The dataset consists of 1,385,444,808 tuples, involving 30,690,841 unique
streamers. As the focus of this study is primarily on the number of streamers and the
number of viewers on the platform, the dataset is aggregated into daily and hourly basis,
respectively. A summary of the original dataset is provided in Table 1.
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Table 1. Overview of the original dataset.

Category Description

Period of analysis 2020.12.25–2023.04.12

Duration 839 days

Time interval 10 min

Tuples 1,385,444,808

Number of unique streamers 30,690,841

Data attribute fields room_id, room_name, cate_id, owerner_id, nick_name,
show_time, now_time, online, fans

2.2 Prediction Methods

To assess the efficacy of live streaming prediction methodologies, we conduct a system-
atic comparison of prediction performance between two categories of methods: tradi-
tional time series prediction techniques and machine learning algorithms. Specifically,
we evaluate ARIMA, SARIMA, BP, RNN, LSTM, GRU, Bi-LSTM, Random Forest,
XGBoost, and Extra Tree models.

ARIMA. As the most widely used traditional time series prediction method [18].
ARIMA(p, d , q) integrates themain features of autoregression (AR), differencing (I ), and
moving average (MA) models to address issues such as non-stationarity of time series,
correlation between observations, and residual errors [19]. Equation (1) demonstrates
the ARIMA(p, d , q) model using the lag polynomial L [20, 21].(

1−
p∑

i=1

ϕiL
i

)
(1− L)d =

⎛
⎝1−

q∑
j=1

θjL
i

⎞
⎠εt . (1)

In the equation, Li denotes the lag operator, ϕi represents the autoregressive model
parameter, θj represents the moving average parameter, and εt is the error term.

SARIMA. SARIMA extends ARIMA by including the seasonal terms (P, D, Q) to
capture repetitive patterns within the data’s seasonal cycles. Assuming that yt is a non-
stationary time series,wt represents a Gaussian white noise process, Ep(Bm) represents a
seasonal moving average polynomial,�Q(Bm) demonstrates a seasonal moving average
polynomial, and B is a backshift operator. Equation (2) presents the SARIMA model
[22].

Ep(B
m)φp(B)(1− Bm)D(1− B)d yt = �Q(Bm)θq(B)wt . (2)

Backpropagation (BP). BP is a key algorithm in neural networks that enables the
optimization of the network’s parameters, specifically the connection weights between
neurons. It works by propagating the error from the network’s output back to its inputs,
allowing the weights to be adjusted in a way that reduces the error [23]. This iterative
process gradually brings the network’s output closer to the desired target output, and
achieves better prediction performance.
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Recurrent Neural Network (RNN). RNN is a robust ANN that can store and utilize
information from previous time steps as input for the current time step, and use existing
time series data to predict future data over a specific length of time [22]. This architecture
enables RNN to effectively handle sequential data with temporal dependencies and
remember important features of the input sequential data, making it widely used for
time series prediction tasks. The single RNN cell is represented mathematically by
Eq. (3) [22].

ht = tanh(W
[
ht−1, xt

] + b). (3)

where b represents the bias matrix, W denotes the weight matrix, and ht and ht−1 are
the hidden states at the current and previous time steps, respectively.

Long Short Term Memory (LSTM) [24]. LSTM differs from the basic structure of
traditional RNNs, it introduces a long-termmemory cell state and utilizes “gates” (forget
gate, input gate, output gate [20]) to regulate the state and output at different time
steps. By employing this approach, LSTM addresses issues such as gradient vanishing,
gradient exploding and insufficient long-term memory capacity commonly encountered
in RNNs [25], demonstrating significant effectiveness in handling sequential problems.
The LSTM unit structure is shown in Fig. 1.

Fig. 1. The LSTM unit structure.

Gated Recurrent Unit (GRU). GRU is another variation of the RNNmodel. Similar to
LSTM,GRU introduces a long-termmemory cell state and utilizes “gates” (the reset gate
and update gate) to control information and regulate the states and outputs at different
time steps [26, 27]. Compared to LSTM, the GRU model has fewer parameters and is
computationally more efficient but may exhibit slightly weaker modeling capabilities in
certain tasks.

Bidirectional Long Short Term Memory (Bi-LSTM). Bi-LSTM is a variant of the
LSTMmodel, proposed byGraves et al. [28] in 2005. The hidden layer of Bi-LSTMcon-
sists of both forward LSTM cell states and backward LSTM cell states [29]. One LSTM
cell state considers the forward input and past information, while the other considers the
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backward input and future information. This structure enables simultaneous considera-
tion of past and future information, resulting in improved predictive performance [30].
The Bi-LSTM network structure is shown in Fig. 2.

Fig. 2. The Bi-LSTM network structure.

Random Forest (RF). The core idea of Random Forest is to make predictions and
classifications by constructing a set of decision trees [31]. Each decision tree is built
independently, based on different random samples and feature subsets [32]. And final
prediction result of the random forest is determined byvoting or averaging the predictions
from each decision tree [33].

Extreme Gradient Boosting (XGBoost) [34]. XGBoost is an ensemble learning algo-
rithm based on gradient boosting algorithm and decision tree [34, 35]. It iteratively trains
multiple weak learners (typically decision trees) and combines them to create a strong
classifier for predicting and classifying complex data. In each iteration, XGBoost fits the
residuals of the previous model to gradually improve the prediction performance. Addi-
tionally, XGBoost employs innovative techniques such as regularization [36], automatic
handling of missing values, and parallel computing to enhance both the accuracy and
efficiency of the model.

Extra Tree (ET). ET builds an ensemble of unpruned decision or regression trees
according to the classical top-down procedure [37–40]. Its two main differences with
other tree-based ensemble methods are that it splits nodes by choosing cut-points fully
at random and that it uses the whole learning sample (rather than a bootstrap replica) to
grow the trees [41]. Each individual tree within ET is trained on the original dataset, and
during the construction process, ET randomly selects a feature value to split the tree. By
combining the predictions from multiple trees, typically through voting or averaging,
ET can make accurate predictions and handle complex datasets with high dimensional
feature spaces. A schematic diagram of an extra tree algorithm is shown in Fig. 3.



34 H. Chen et al.

Fig. 3. Extra Tree Algorithm

2.3 Experimental Design

We evaluate the importance of different variables and incorporate different features into
the models for prediction and fitting online streaming data. Therefore, the experimental
has two parts: the first part does not involve feature inputs, while the second part includes
the addition of features for prediction.

We select data from December 25, 2020, 00:00 to April 12, 2023, 24:00 using a
sliding window approach to construct training and validation datasets for prediction.
The prediction target is the viewer count for each hour of the next day, totaling 24
h. Specifically, the sliding window size is 168, including past 168 time steps, with a
pre-diction time window size of 24.

The univariate live streaming data is used as both input and output in the first part,
while multivariate data (including streamer count, hours of the day, and the combination
of both) is used as inputwith univariate output in the second part. Evaluationmetrics such
as MAPE, MAE, MSE, and RMSE are calculated to assess the prediction performance.

3 Results

3.1 Data Overview and Temporal Analysis

Basic Statistics. In this section, we investigate the distribution of viewer count for all
live rooms on the platform at a specificmoment. For example, onApril 12, 2023, at 21:00
(as shown in Fig. 4 (a)), the number of viewers in different live rooms follow a power-law
distribution with an exponential cutoff [29]. In other words, the distribution of viewer
count in the top-ranked (less than 1%) live rooms follows a power-law distribution,
represented by the Zipf distribution (as shown in Eq. (4)). However, beyond that, the
distribution of viewer count follows an exponential distribution, represented by Eq. (5).
The specific forms of the distributions and the values of their parameters can be found
in Table 2.
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y = cxβ. (4)

y = ax(−
x
t ) + y0. (5)

(a)                                                                (b)

Fig. 4. (a) displays the distribution of viewer count in the live rooms on the platform at 21:00 on
April 12, 2023. The horizontal axis represents the ranking of the streamers, and the vertical axis
represents viewer count. (b) depicts a cumulative probability bar chart of the viewer count in the
top 20% to 100% rankings of streamers.

Table 2. Fitting results of distributions of viewer count.

range of x range of parameters R2

Zipf Distribution [1, 100] c = 9.83× 106

β = −0.40
0.99684

[100, 2700] c = 3.41× 107

β = −0.66
0.99799

Exponential Distribution [2700, 20000] a = 4.33× 105

t = 2794
y0 = 1118

0.99982

[20000, 35000] a = 1.53× 104

t = 7961
y0 = −196

0.98439

The analysis of the viewer count variations reveals a strong heterogeneity across live
rooms, with a few highly popular top-ranked live rooms attracting the majority of the
viewer, while the tail-end live rooms have very few viewers. Furthermore, a cumulative
probability bar chart of the viewer count was plotted (as shown in Fig. 4 (b)), confirming
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that the viewer distribution on the platform follows thePareto Principle, also knownas the
80/20 rule. This highly heterogeneous distribution pattern has resulted in a few streamers
becoming internet celebrities, as they possess greater attractiveness and influence over
the viewers compared to ordinary streamers. This further validates the rationale behind
the increased live streaming load caused by internet celebrities’ live shows or official
live events.

Major Events. To gauge the influence of significant events on streaming metrics, we
analyze a segmented subset of streaming data spanning fromSeptember 22, 2022, to Jan-
uary 22, 2023, with a specific focus on major esports tournaments within this timeframe.
The graphical representation of these pivotal events, showcased in Fig. 5, illustrates the
fluctuations in viewer count (depicted by the blue line) juxtaposed with the timelines of
the esports tournaments (highlighted in colored regions).

Observing the trends delineated by the blue line, it becomes evident that esports tour-
naments generally coincide with an uptick in viewer count. However, notable exceptions
warrant attention. For instance, the yellow and purple regions in the visual correspond
to the League of Legends World Championships. Notably, the yellow segment, encap-
sulating the group stage, exhibits an upward trajectory in traffic. Conversely, the purple
segment, encapsulating the quarter-finals, semi-finals, and finals, displays a downward
trend. This divergence could be attributed to the limited advancement of Chinese teams
beyond the quarter-finals during the 2022 League of Legends World Championships.

Fig. 5. Changes in the number of viewers associated with major esports events.

Furthermore, the red segment represents an aberrant dip in traffic on December 6,
2022, attributable to a nationwide entertainment suspension in remembrance of former
president Jiang Zemin. This suspension led to the cessation of public entertainment
activities across the country, profoundly affecting streaming traffic on that day.

General Viewer Characteristics. Line graphs illustrating the trends in the number
of streamers and viewers over time are generated from the online live streaming data,
as shown in Fig. 6. Studies have shown that the domestic live streaming platform load
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showeda significant intra-day effect, showing invertedN-type [12].Our data also exhibits
this pattern. As seen in Fig. 6 (a), the load variation on the live streaming platform
follows a clear pattern within a day: viewer count in the live rooms decreases starting
from midnight and gradually rises after reaching a minimum value at around 6–8 am
(typically 7 am). Thereafter, it reaches the peak of the day between 9–11 pm, followed
by a decline. Moreover, it appears that the fluctuations in both the number of viewers
and the number of streamers are synchronized.

Figure 6 (b) represents the average traffic variation trend fromMonday to Sunday. It
demonstrates that the number of streamers and viewers remain relatively stable through-
out the week, ranging from approximately 72,000 to 74,000 streamers and 404 million
to 425 million viewers. Additionally, the changes in the average number of streamers
and viewers are not perfectly synchronized but exhibit a similar trend. Specifically, the
quantities gradually increase from Monday to Saturday, reaching a peak on Saturday,
and then decrease (although there may be slight fluctuations on certain days).

Fig. 6. Daily traffic data andweekly traffic Data. In (a), the traffic changes within a day are plotted
in hours, while in (b), the average traffic changes from Monday to Sunday are plotted.

Stationarity Test and Data Autocorrelation Analysis. In this case, We employ the
Augmented Dickey-Fuller (ADF) test to assess the stationarity of the data. According to
the ADF test, the test statistic is calculated as −6.35, and the p-value is 2.685557e−08,
indicating that the series is stationary. This implies that the fluctuations in the time series
data are predictable in the long run and not influenced by long-term trends. Furthermore,
autocorrelation analysis conducted on the series of viewer count revealed two significant
peaks at lag 24 and lag 168, as shown in Fig. 7. This indicates that the live streaming
traffic data exhibits a cyclic pattern of autocorrelation with a period of one day (24
h) and one week (7 days, 168 h), which aligns with typical characteristics of network
traffic data. This finding suggests that time can be considered as an important feature in
designing prediction algorithms for live streaming traffic data. By incorporating features
such as hours of the day and days of the week, we can capture the cyclic patterns and
enhance the accuracy of predictions.
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Fig. 7. Autocorrelation test result plot for different lag periods. The autocorrelation plot illustrates
the strength of the correlation between lag periods and observed values. The horizontal axis
represents the lag periods, with the left plot showing a lag of 50 and the right plot showing a lag
of 200. The vertical axis represents the autocorrelation coefficient.

3.2 Univariate Prediction

This section showcases the prediction performance and comparative analysis of ten
different models used in this study for forecasting the viewer_count for the next 24 h
in a univariate forecasting task. The specific results are presented in Table 3 and Fig. 8,
which display error levels, comparisons between models, and the fit be-tween predicted
and actual values in the validation set.

The accuracy of final predictions depends on the selection of model parameters. We
employed grid search to find optimal hyperparameters and further improved performance
through fine-tuning. For instance, the Bi-LSTM model was tested with various hidden
layer sizes, learning rates, and iterations, determining the best parameter combination.
The final model parameters are as follows:

➀ ARIMA: the order values for p, d, and q are set as 6, 0, and 5 respectively.
➁ SARIMA: the order is set as (2,0,2), and the seasonal order is set as (2,0,2,12).
➂ BP: the input layer size is 168, the output layer size is 24, the hidden layer size is

150, the learning rate is 0.001, and it iterates for 150 rounds.
➃ RNN: the first layer size of 256, with a tanh activation function and a hidden state

sequence at each time step; the second layer size is 100, with a tanh activation function
and does not return a sequence. The final layer is a fully connected layer with 24
neurons. The loss function used is mean squared error, the optimizer is Adam with a
learning rate of 0.001, and the training batch size is 64.

➄ LSTM: only one hidden layer with 20 neurons and uses the ReLU activation function.
➅ GRU: a hidden layer size of 256, an output layer size of 24, a batch size of 32, and a

learning rate of 0.0003.
➆ Bi-LSTM: the input layer, hidden layer, and output layer have 168, 128, and 24 neu-

rons respectively. The training iterations, batch size, activation function, loss function,
and optimization function are 150, 128, LeakyReLU,MAE, andNadam. The learning
rate is dynamically adjusted based on epochs (reduced to 1/10 every 50 epochs).

➇ RF: 100 regression trees.
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➈ XGBoost: 1000 estimators, each with a maximum depth of 3 and a learning rate of
0.01. Additionally, training will stop early if there is no improvement in the validation
set error for 50 consecutive rounds.

➉ ET: 100 regression trees with a random state of 0.

Among the evaluated models, the Bi-LSTMmodel demonstrates the most outstand-
ing performance. Specifically, the Bi-LSTM model achieves the lowest MAPE value of
0.00994, as well as the smallest MAE, MSE, and RMSE values. Compared to the worst-
performing AMIRAmodel, the Bi-LSTMmodel has an MAPE value that is only 4.75%
of itsMAPE value, resulting in a 95.25% improvement in accuracy. Compared to the rel-
atively better-performing RF model, the Bi-LSTM model shows a 2.55% improvement
in accuracy.

These results indicate that the Bi-LSTM model exhibits minimal errors and high
accuracy in predicting online live streaming traffic. In contrast, other neural network
models such as RNN, LSTM, and GRU, as well as the traditional time series model
SARIMA, perform relatively poorer. This suggests that the Bi-LSTM model, based on
the bidirectional long short-term memory network, possesses an advantage in network
traffic forecasting tasks. However, it is worth noting that apart from the Bi-LSTMmodel,
several other models also display commendable performance. For instance, the Random
Forest (RF), XGBoost, and Extra Tree (ET) models yield relatively good results across
multiple evaluation metrics.

Table 3. Comparison of evaluation metric values for each model (without features).

Model MAPE MAE MSE RMSE

AMIRA 0.2093 1.055× 109 1.52×1018 1.23×109

SARIMA 0.0144 7.35×107 9.45×1015 9.72×107

BP 0.031 1.48×108 3.696×1016 1.92×108

RNN 0.031 1.42×108 2.94×1016 1.71×108

LSTM 0.0857 4.12×108 2.53×1017 5.03×108

GRU 0.021 9.94×107 1.41×1016 1.19×108

Bi-LSTM 0.00994 5.11× 107 5.409× 1015 7.35× 107

RF 0.0102 5.17×107 6.11×1015 7.82×107

XGBoost 0.0175 8.56×107 1.01×1016 1.01×108

ET 0.012 6.34×107 9.26×1015 9.62×107
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Fig. 8. The fitting performance of models (without features).

3.3 Feature Importance

In this partition, we incorporate additional features to predict viewer count. Specifically,
we have chosen three features: streamer count, hours of the day, and the combination of
both features. To emphasize the impact of features on the results, the model parameters
in this section are set to be the same as those in the univariate prediction section. The
selection of these features is based on their potential impact on the online live streaming
platform’s viewer count.

Figure 9 and Fig. 10 respectively illustrate the comparison of MAPE values under
different conditions and the variation of four evaluation metrics. In Fig. 9, lighter colors
indicate lower MAPE values and smaller model errors.

Fig. 9. The comparison of MAPE values with and without features.

StreamerCount. The error levels and comparison between differentmodels after incor-
porating streamer count as an input feature for prediction are shown in Table 4. ARIMA
and SARIMAmodels are excluded as they can only perform univariate forecasting. The
results show that Bi-LSTM, RF and ET have similar performance. Among them, ET
has the lowest MAPE value. However in terms of MAE, MSE, and RMSE, Bi-LSTM
slightly outperforms ET and RF.
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Fig. 10. The changes in evaluation metric values. The figure above illustrates the changes in four
evaluation metrics - MAPE, MAE, MSE, and RMSE - under different scenarios: without features,
with streamer count, with hours of the day, and with the combination of streamer count and hours
of the day. These changes reflect the performance and variations of each model under different
conditions.

Furthermore, BP, RNN, GRU, and XGBoost models perform between Bi-LSTM and
LSTM models. While their MAPE values are slightly higher than the Bi-LSTM model,
they remain relatively low. However, their MAE, MSE, and RMSE values are signifi-
cantly higher than those of the Bi-LSTM model, indicating a larger gap between their
predicted and observed values. The LSTM model performs the worst, with the highest
MAPE value (0.0547), as well as highest MAE, MSE, and RMSE values, suggesting
relatively large prediction errors.

Comparing these results with the previous univariate forecasting, after incorporating
streamer count as a feature, the Bi-LSTM model’s MAPE decreased from 0.00994 to
0.00967, indicating an improvement in prediction accuracy. Other metrics such asMAE,
MSE, and RMSE also show improvements. LSTM, RF, and ETmodels are no exception
to this. However, the BP model experiences a significant decline in performance after
incorporating streamer count as a feature. Overall, there is an enhancement in overall
prediction accuracy and a clear improvement in othermetricswhen considering the entire
dataset. Nevertheless, incorporating this feature may not always lead to improvements
and can potentially result in a decrease in prediction accuracy.

Hours of the Day. The error levels and comparison between different models after
incorporating hours of the day for prediction are shown in Table 5. Incorporating hours
of the day into the model results in varying levels of performance. In comparison to other
models, Bi-LSTM, RF, and ET models exhibit better accuracy and lower percentage
errors. Specifically, in this task, Bi-LSTM and RF models perform similarly. And ET
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Table 4. Comparison of evaluation metric values for each model (with streamer count).

Model MAPE MAE MSE RMSE

BP 0.042 2.08×108 7.64×1016 2.76×108

RNN 0.0427 1.62×108 3.73×1016 1.93×108

LSTM 0.0547 2.76×108 1.19×1017 3.46×108

GRU 0.025 1.06×108 1.47×1016 1.21×108

Bi-LSTM 0.00967 4.72× 107 4.78× 1015 6.92× 107

RF 0.00947 5.29× 107 6.79× 1015 8.24× 107

XGBoost 0.0177 8.67×107 1.03×1016 1.02×108

ET 0.00927 4.93× 107 5.70× 1015 7.55× 107

demonstrates the best performance, with an MAPE value of 0.00951, and the lowest
values forMAE,MSE, and RMSE (4.93×107, 5.70×1015, and 7.55×107, respectively).
Compared to the worst-performing LSTM model, the ET model has an MAPE value
that is only 5.76% of its MAPE value, resulting in a 94.24% improvement in accuracy.
Compared to the relatively better-performing RF and Bi-LSTM model, the ET model
shows a 22.05% and 30.58% improvement in accuracy, respectively. It is evident that
when incorporating hours of the day as a feature, the ET model has the advantage.

Table 5. Comparison of evaluation metric values for each model (with hours of the day).

Model MAPE MAE MSE RMSE

BP 0.081 3.89×108 2.41×1017 4.91×108

RNN 0.079 4.11×108 2.28×1017 4.78×108

LSTM 0.165 7.18×108 6.27×1017 7.92×108

GRU 0.021 9.76×107 1.63×1016 1.28×108

Bi-LSTM 0.0137 6.48×107 8.35×1015 9.14×107

RF 0.0122 6.48×107 8.80×1015 9.38×107

XGBoost 0.0176 8.67×107 1.04×1016 1.02×108

ET 0.00951 5.10× 107 5.82× 1015 7.63× 107

Considering the three tasks, the Bi-LSTM, RF, and ET models consistently display
stable prediction performance, consistently ranking among the top three in terms of
prediction accuracy. Specifically, before incorporating features, the Bi-LSTM model
exhibits highest prediction accuracy, and the inclusion of the number of streamers as a
feature further lowers its MAPE, indicating improved accuracy. However, the perfor-
mance of the Bi-LSTM model does not significantly improve after incorporating hours
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of the day as a feature, whereas the ETmodel demonstrate superior performance and pre-
dictive accuracy. In contrast, the LSTM model consistently performs relatively poorly,
with lower prediction accuracy before and after incorporating features, as evidenced
by higher error metrics. Additionally, the BP and RNN models show relatively poor
prediction performance. The GRU and XGBoost models demonstrate good prediction
accuracy, ranking in the middle range. It can be observed that in this task, the ET model
is more suitable for utilizing hours of the day for prediction.

Streamer Count and Hours of the Day. Table 6 displays the comparative error levels
and results of different models upon integrating streamer count and hours of the day for
prediction. Notably, upon inclusion of streamer count as a feature alongside hours of the
day, all models showcased varying degrees of performance enhancement compared to
solely incorporating hours of the day.

Several plausible explanations account for this observed phenomenon: First, the
addition of streamer count furnishes the models with deeper insights into network live
streaming load, establishing a correlation between streamer count and viewer count. This
infusion of data grants the models enhanced understanding of data patterns and trends,
consequently bolstering prediction accuracy. Second, the amalgamation of streamer
count and hours of the day offers a more holistic and interconnected dataset. This amal-
gamated input empowers the models to decipher interactions among multiple features,
facilitating a more comprehensive comprehension of the data and, consequently, more
precise predictions.

Table 6. Comparison of evaluation metric values for each model (with streamer count and hours
of the day).

Model MAPE MAE MSE RMSE

BP 0.079 3.84×108 2.11×1017 4.59×108

RNN 0.076 4.29×108 3.18×1017 5.64×108

LSTM 0.059 2.91×108 1.15×1017 3.39×108

GRU 0.017 8.50×107 1.37×1016 1.17×108

Bi-LSTM 0.0113 5.76×107 7.99×1015 8.94×107

RF 0.0119 6.43×107 8.63×1015 9.29×107

XGBoost 0.0184 9.00×107 1.12×1016 1.06×108

ET 0.00913 4.45× 107 4.27× 1015 6.54× 107

Furthermore, in this task, the ETmodel continues to perform the best compared to the
other models, with a MAPE value of 0.00913. It also achieves the lowest values in terms
of MAE, MSE, and RMSE (4.45×107, 4.27×1015 and 6.54×107, respectively). The
Bi-LSTM and RF models follow in performance, while the BP and RNNmodels exhibit
relatively higherMAPE values, indicating larger errors in their predictions. Compared to
the worst-performing BP model, the ET model has an MAPE value that is only 11.56%
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of its MAPE value, resulting in a 88.44% improvement in accuracy. Compared to the
relatively better-performing RF and Bi-LSTM model, the ET model shows a 23.28%
and 19.20% improvement in accuracy, respectively.

When comparing these results with the previous three experiments, some trends
and changes can be observed. Bi-LSTM, RF, and ET consistently demonstrate top per-
formance among the models, with low MAPE, MAE, MSE, and RMSE values. And
Bi-LSTM and ET outperform RF, indicating their stability and accuracy in dealing with
large-scale and long-term online live streaming data prediction problems. The ETmodel,
while slightly inferior to the Bi-LSTMmodel in the experiment without features (though
still performing well), it consistently exhibits excellent or even the best performance in
other experiments,making it the preferredmodel for predicting large-scale and long-term
online live streaming load when features are incorporated.

Different models exhibit variations in handling different features. For instance, Bi-
LSTM shows a stronger capability to leverage information from streamer count com-
pared to hours of the day. Similarly, the ET model also demonstrates a similar pattern.
However, the performance of the ETmodel is less influenced by the features and exhibits
minimal fluctuations, demonstrating its relative stability.

4 Conclusions and Discussion

Our study centers on the analysis of extensive, prolonged online live streaming data. We
conduct a thorough comparative assessment of diverse methods and models utilized for
traffic prediction. Moreover, our approach involves the integration of various features
aimed at augmenting prediction accuracy and refining the interpretability of prediction
outcomes.

The findings highlight the performance stability of the Bi-LSTM, ET, and RFmodels
in the realm of large-scale and long-term live streaming data prediction. Notably, the
ET and Bi-LSTM models exhibit exceptional accuracy and precision, facilitating more
precise forecasts of network traffic fluctuations while maintaining lower Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE). Particularly, the ET model stands out as the
most effective upon incorporating diverse features.

Our comparative analysis underscores the superiority of machine learning and deep
learningmodels over traditional time series forecastingmethods in predicting online live
streaming traffic. The Bi-LSTM and ET models emerge as preferred choices, followed
by RF, due to their superior performance.

In terms of feature integration, the inclusion of streamer count significantly enhances
the performance of specific models. Conversely, the inclusion of hours of the day yields
marginal improvements in predictive outcomes. Interestingly, experiments integrating
both streamer count and hours of the day outperform experiments solely focused on hours
of the day. However, somemodels exhibit slightly reduced performance in the combined
approach compared to experiments solely reliant on streamer count. This reiterates the
influential role of streamer count in improving prediction accuracy, while the impact of
hours of the day remains minimal and, in some cases, may even diminish the predictive
performance of the models.
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Several potential avenues for optimization and future research merit consideration.
First, while this study draws conclusions based on the provided dataset and specific prob-
lem parameters, selecting the optimal model should extend beyond individual model
performance metrics. Factors like model complexity, training duration, interpretabil-
ity, and scalability are crucial considerations that should influence the ultimate model
selection. Expanding the scope of factors influencing viewer count for comprehensive
analysis and prediction would be beneficial for future research. Incorporating additional
variables that potentially impact live streaming traffic could offer a more holistic under-
standing of prediction dynamics. Furthermore, future investigations might delve into a
more detailed examination of online live streaming traffic prediction. This could involve
a targeted analysis, focusing on aspects intricately tied to live streaming operations. For
instance, analyzing and predicting viewer counts for multiple or multiple-category live
streaming rooms could provide valuable insights into granular operational aspects. Alter-
natively, exploring innovative ensemblemodels presents an opportunity to enhance oper-
ational efficiency. Novel approaches in ensemble modeling could specifically address
concerns such as the training speed of the Bi-LSTM model, thus improving overall
model efficiency.

References

1. Shu-Hui, G., Xin, L.: Live streaming: data mining and behavior analysis. Acta Phys. Sinica
69(83) (2020)

2. Sharma, S., Gupta, V.: Role of twitter user profile features in retweet prediction for big data
streams. Multimedia Tools Appl. 81, 27309–27338 (2022)

3. Liu, X.: The market changes and causes of game live streaming industry from 2019 to 2020
by case study of HUYA. In: The 2022 International Conference on Economics, Smart Finance
and Contemporary Trade (2022)

4. Heim, A.B., Patel, R.J.: Remote learning options. Science 377(6601), 22–24 (2022)
5. Chen, H., Dou, Y., Xiao, Y.: Understanding the role of live streamers in live-streaming e-

commerce. Electron. Commer. Res. Appl. 59(C), 101266 (2023)
6. Qian, T.Y., Seifried, C.: Virtual interactions and sports viewing on social live streaming

platforms: the role of co-creation experiences, platform involvement, and follow status. J.
Bus. Res. 162, 113884 (2023)

7. (CNNIC)ew, t.C.I.N.I.C.: The 51st edition of the “statistical report on internet development
in china”. Report 1009-3125 (2023)

8. Mengxuan, K., Junping, S., Pengfei, F.A.N.: Survey of network traffic forecast based on deep
learning. Comput. Eng Appl. 57(10), 1–9 (2021)

9. Yan, Z., Yang, Z., Griffiths, M.D.: “Danmu” preference, problematic online video watching,
loneliness and personality: an eye-tracking study and survey study. BMC Psychiatry 23(1),
523 (2023)

10. Kaytoue,M., Silva,A.,Cerf, L.,Meira Jr,W.,Raıssi,C.:Watchmeplaying, i amaprofessional:
a first study on video game live streaming. In: Proceedings of the 21st InternationalConference
on World Wide Web, pp. 1181–1188 (2012)

11. Jia, A.L., Shen, S., Epema, D.H., Iosup, A.: When game becomes life: the creators and
spectators of online game replays and live streaming. ACM Trans. Multimedia Comput.
Commun. Appl. (TOMM) 12(4), 1–24 (2016)

12. Arnett, L., Netzorg, R., Chaintreau, A., Wu, E.: Cross-platform interactions and popularity in
the live-streaming community. In: The 2019CHIConference onHumanFactors inComputing
Systems, pp. 1–6 (2019)



46 H. Chen et al.

13. Netzorg, R., Arnett, L., Chaintreau, A., Wu, E.: PopFactor: live-streamer behavior and
popularity. In: International Conference on Web and Social Media (2021)

14. Nascimento, G., et al.: Modeling and analyzing the video game live-streaming community.
In: 2014 9th Latin American Web Congress, pp. 1–9 (2014)

15. Tu, W., Yan, C., Yan, Y., Ding, X., Sun, L.: Who is earning? Understanding and modeling the
virtual gifts behavior of users in live streaming economy (2018)

16. Chen, Z., Shen, J., Zhu, M., Hu, B., Liu, A.: Predicting virtual gifting behaviors in live
streaming using Danmaku information. In: 2022 8th International Conference on Big Data
Computing and Communications (BigCom), pp. 190–198 (2022)

17. Douyu reports fourth quarter 2022 unaudited financial results (2023/03/20 2023)
18. Zhang, Y., Meng, G.: Simulation of an adaptive model based on AIC and BIC ARIMA

predictions. J. Phys: Conf. Ser. 2449, 012027 (2023)
19. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparison of ARIMA and LSTM in

forecasting time series (2018)
20. Pierre,A.A.,Akim, S.A., Semenyo,A.K., Babiga, B.: Peak electrical energy consumption pre-

diction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU approaches. Energies
16, 4739 (2023)

21. Guenoupkati,A., Salami,A.A.,Kodjo,M.K.,Napo,K.: Short-termelectricity generation fore-
casting using machine learning algorithms: a case study of the Benin electricity community
(C.E.B). In: TH Wildau Engineering and Natural Sciences Proceedings, vol.1 (2021)

22. ArunKumar, K., Kalaga, D.V., Kumar, C.M.S., Kawaji, M., Brenza, T.M.: Comparative anal-
ysis of gated recurrent units (GRU), long short-term memory (LSTM) cells, autoregressive
integrated moving average (ARIMA), seasonal autoregressive integrated moving average
(SARIMA) for forecasting covid-19 trends. Alexandria Eng. J. 61(10), 7585–7603 (2022)

23. Sadeq, J.M., Qadir, B.A., Abbas, H.H.: Cars logo recognition by using of backpropagation
neural networks. Measure. Sens. 26, 100702 (2023)

24. Li, Y.F., Cao, H.: Prediction for tourism flow based on LSTM neural network. In: 6th Inter-
national Conference on Identification, Information and Knowledge in the Internet of Things
(IIKI). Procedia Computer Science, vol. 129, pp. 277–283 (2018)

25. Amalou, I., Mouhni, N., Abdali, A.: Multivariate time series prediction by RNN architectures
for energy consumption forecasting. Energy Rep. 8, 1084–1091 (2022)

26. Cho, K., Merrienboer, B.V., Bahdanau, D., Bengio, Y.: On the properties of neural machine
translation: encoder-decoder approaches (2014)

27. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow
prediction (2016)

28. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

29. Doulamis, A.D., et al.: A convolutional neural network face recognition method based on
BILSTM and attention mechanism. Comput. Intell. Neurosci. 2023, 2501022 (2023)

30. Li, Z.Y., Ge, H.X., Cheng, R.J.: Traffic flow prediction based on BILSTM model and data
denoising scheme. Chin. Phys. B 31(4), 214–223 (2022)

31. Alakus, C., Larocque, D., Labbe, A.: Covariance regression with random forests. BMC
Bioinform. 24(1), 258 (2023)

32. Lin,Y., Jeon,Y.: Random forests and adaptive nearest neighbors. J.Am. Stat. Assoc. 101(474),
578–590 (2006)

33. Moon, J., Kim, Y., Son, M., Hwang, E.: Hybrid short-term load forecasting scheme using
random forest and multilayer perceptron. Energies 11(12), 3283 (2018)

34. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system (2016)
35. Lei, T.M.T., Ng, S.C.W., Siu, S.W.I.: Application of ANN, XGBoost, and other ml methods

to forecast air quality in Macau. Sustainability 15(6), 5341 (2023)



Comparison of Prediction Methods 47

36. Amjad, M., Ahmad, I., Ahmad, M., Wróblewski, P., Kamiński, P., Amjad, U.: Prediction of
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